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ABSTRACT: Electron energy-loss spectroscopy (EELS) is a unique tool that is
extensively used to investigate the plasmonic response of metallic nanostructures. We
present here a novel approach for EELS calculations using the finite-difference time-
domain (FDTD) method (EELS-FDTD). We benchmark our approach by direct
comparison with results from the well-established boundary element method (BEM)
and published experimental results. In particular, we compute EELS spectra for
spherical nanoparticles, nanoparticle dimers, nanodisks supported by various
substrates, and a gold bowtie antenna on a silicon nitride substrate. Our EELS-
FDTD method can be easily extended to more complex geometries and configurations. This implementation can also be directly
exported beyond the FDTD framework and implemented in other Maxwell’s equation solvers.
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Energy-loss spectroscopy using fast electrons was used in
the first experimental detection of surface plasmons in

metals.1−4 Since these pioneering studies, electron energy-loss
spectroscopy (EELS) has become a unique tool for probing
surface plasmons of metallic nanostructures with unprece-
dented spatial (<1 nm) and energy (<100 meV) resolution.5−10

With the ability of electrons to probe dark surface
plasmons,10−13 to provide accurate information on the
nanostructure morphology and local environment,5 quantitative
information on surface plasmon kinetics, damping, and
dispersion,4,14 EELS has become an irreplaceable tool for the
experimental study of surface plasmons. Consequently, EELS is
widely used to investigate optical properties of complex metallic
nanostructures (i.e., complicated geometries, strongly coupled
nanosystems).9 The particular nature of the electromagnetic
field of an electron (i.e., fast moving point charge, Figure 1a)
makes the theoretical modeling of EELS data more involved
than the modeling of optical experiments. For such simulations
a myriad of different numerical techniques have been developed
in the past years, including boundary element method
(BEM),15,16 discrete dipole approximation (DDA),17−19

finite-element method (FEM),10,12,20 finite-difference time-
domain (FDTD) method,21 and discontinuous Galerkin time-
domain (DGTD) method.22 Although these methods are able
to predict and interpret experimental EELS spectra, they
possess some of the following significant drawbacks: (i) the
need for large computational resources,17−19 (ii) limitations to
nonpenetrating electron trajectories,18−20,22 (iii) requiring
highly symmetrical geometries,15−19 and (iv) complexity (i.e.,
programming skills required, absence of user-friendly inter-
face).15−22 These drawbacks are the main reason why EELS
experimental results are generally compared to numerical

simulations with optical excitations.11,23−25 A recently pub-
lished review article by Kociak and Steṕhan explicitly states
that, despite an implementation for cathodoluminescence (CL)
spectroscopy in FDTD26−28 and the EELS implementation in
DGTD,22 there is a clear lack of time-domain numerical
methods for electron-beam spectroscopy calculations.6

In this paper, we propose a novel numerical procedure for
EELS simulations employing a reliable and widely used
commercial package: Lumerical FDTD Solutions.29 This
package implements a high performance 3D solver that offers
a user-friendly environment for solving Maxwell’s equations
using the FDTD method.30 We benchmark our method by
direct comparison with results from the well-established BEM
method15 for three representative systems: (i) isolated
nanospheres, (ii) nanosphere dimers, and (iii) nanodisks
supported by a substrate. In the particular case of non-
penetrating trajectories for nanospheres, we also compare our
method with analytical results from Mie theory.9,31,32 Finally, in
order to demonstrate the power of this implementation, we
perform EELS calculations for a more complex geometry
consisting of a supported bowtie antenna where experimental
results are available.

■ METHOD
The theoretical formalism for EELS simulations has been
extensively discussed in the literature (cf. refs 1, 9, and
references therein). The physics of EELS can be understood as
follows: the electric field produced by an electron moving with
constant velocity v polarizes the nanostructure placed in the
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vicinity of its trajectory (cf. Figure 1a). This, in turn, induces an
electric field Eind that acts back on the electron, exerting a force
that produces the energy loss. This energy loss can be written
as9
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where e is the elementary charge, re(t) represents the electron
trajectory, and
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is the energy loss probability per unit of frequency ω.9 The
second term of this expression, Γbulk, represents the bulk loss
probability. This contribution can be calculated using the
following analytical expression9
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where L is the length of the electron trajectory inside the
medium, ε is the medium dielectric permittivity, and qc ≈
ℏ−1[(meυϕout)

2 + (ℏω/υ)2]1/2 is the cutoff momentum
determined by the electron mass me, the electron velocity υ,
and the collection angle ϕout of the microscope. This expression
is valid within the local response approximation, in which only
low enough momentum transfers below qc are collected. In the
remainder of this paper, we do not consider the bulk
contribution. In addition, and without loss of generality, we
assume the electron trajectory to be in the (x,z) plane, parallel
to z-axis, and separated from the origin by the impact
parameter b, so v = υ ̂z and re(t) = (b,0,υt).
The electric field created by an arbitrary current distribution

(such as a beam of electrons) can be written as33
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in terms of the Green tensor of Maxwell’s equations G(r,r′,ω)
(note that we use Gaussian units). This quantity is defined as
the solution of

ε ω ω ω δ−∇ × ∇ × + ′ = − ′
⎡
⎣⎢

⎤
⎦⎥c c

r G r r r r I( , ) ( , , )
1

( )
2

2 2

where ε(r,ω) is the permittivity of the medium and I is the unit
tensor. Using the electron current density relevant for EELS
j(r′,ω) = −eδ(x − b)δ(y)eiωz/υ ̂z and eq 2 we can rewrite the
loss probability (eq 1) as9
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Here, Gzz
ind(z,z′,ω) = ̂z·[G(z,z′,ω) − G0(z,z′,ω)]· ̂z, with

G0(r,r′,ω) being the Green tensor for vacuum (to simplify
the notation we have omitted the lateral spatial coordinates x =
b and y = 0 in the arguments of the Green functions and related
quantities). In the derivation of this expression, we have also
used the reciprocity property of the Green tensor G(r,r′,ω) =
GT(r′,r,ω). Interestingly, Gzz

ind(z,z′,ω) can be obtained from the
z-component of the electric field induced at position z, by an
electric dipole of amplitude p(z′,ω) placed at z′ and oriented
along z-axis
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Using this expression, we can rewrite eq 3 as
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Therefore, all we need to do in order to obtain the loss
probability is to compute the induced electric field generated by
an electric dipole along the electron trajectory. Notice that eq 4
involves only the imaginary part of the induced field, which
remains finite even at the position of the dipole. The use of the
induced field, in place of the total field, for nonpenetrating
trajectories is not required by the theoretical formalism, since
an electron cannot produce energy loss in absence of material
structures. However, due to the finite accuracy of the FDTD

Figure 1. Description of the geometry employed to calculate the electron energy-loss spectrum. (a) Schematics showing the electric field of an
electron moving with velocity v along a straight-line trajectory separated from a metallic nanostructure by the impact parameter b. (b, c) Geometry
used to calculate the induced electric field Ez

ind(z,ω) = Ez(z,ω) − Ez
0(z,ω) for a nanostructure. Here Ez and Ez

0 represent the z-component of the
electric field generated by an electric dipole p(z′,ω) at position z in presence and in absence of the metallic nano-object, respectively. (d) FDTD
simulation setup showing (i) the FDTD simulation domain with PML boundary conditions, (ii) the nanostructure geometry, (iii) the electric dipole
source, (iv) the 1D monitor used to record the electric field along the electron path, and (v) the override meshes used to improve the discretization
for the nanostructure and the electron trajectory.
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calculations we choose to work with the induced field in order
to minimize any numerical instability originating from the
calculation of the fields. In order to calculate the field, we can
employ any Maxwell’s equation solver. Here, we choose to
work with the commercial software package Lumerical FDTD
Solutions29 due to its convenient user environment. The
computation procedure starts by setting a 3D FDTD simulation
domain with perfectly matched layers (PMLs) to prevent
spurious reflections from outer boundaries (Figure 1b,d).34 We
then insert the nanostructure and define an override mesh that
allows us to manually adjust the mesh grid size in a particular
region. This allows us to optimize the discretization of the
physical object and to improve the convergence. After that, we
place a 1D (linear) monitor along the electron trajectory that
allows us to calculate the electric field at specific points. The
monitor is extended across the entire simulation domain
through the PMLs. Again, to improve the convergence and to
ensure a proper spatial discretization along the electron
trajectory, we place a second override mesh on top of the
monitor. Next, we position an electric point dipole p(z′,ω) on
the mesh grid points, aligned with the electron path, and
successively displace it from mesh point to mesh point along
the electron trajectory from z′ = zmax (upper PML) to z′ = zmin
(lower PML). This electric dipole acts as a source in Maxwell’s
equations. For each position, we record the z-component of the
total electric field Ez(z,ω) along the entire monitor (Figure 1b).
To obtain the induced electric field Ez

ind(z,ω), we subtract the
background electric field Ez

0(z,ω) from Ez(z,ω). The former
quantity is calculated using the previously described protocol
but removing all the physical objects (e.g., nano-object and
substrate) from the simulation domain (Figure 1c). For
situations where the electron trajectory penetrates into the
absorbing medium (e.g., the metal), one needs to calculate the
corresponding background electric field generated by an electric
dipole placed in an infinite space filled with the corresponding
material. In practice, this can be accomplished by placing the
dipole at the center of a sphere composed of this material,
whose diameter must be chosen large enough to minimize the
field spill out into the surrounding medium. Here we choose
this diameter equal to the monitor length. In metals, as the field
of the electric dipole decays to zero after a few tens of
nanometers, no field exits the micron-sized metallic domain
which, thus, can be considered as infinite from the dipole’s
point of view. Incidentally, since FDTD simulations are not
stable when an absorbing medium is extended through the
PMLs, this forces us to enlarge the simulation domain and the
monitor to prevent the absorbing medium to reach into the
PMLs. Once the induced electric field is calculated, the EELS
spectrum is readily computed using eq 4. Lumerical and Matlab
scripts used for the postprocessing (i.e., calculation of the
induced electric field and calculation of the integral using eq 4)
are presented in the Supporting Information, S1. Finally, we
note that the velocity of the electron only enters in eq 4
through the cosine function. This allows us to compute EELS
spectra for any electron velocity from a single FDTD
calculation. It is important to notice that one can either
calculate all the dipole positions in one single FDTD
calculation or split each dipole position into smaller
subcalculations to increase the parallelization and optimiza-
tion.29 The results presented in this paper are performed using
the later procedure.

■ ISOLATED NANOSTRUCTURE

We first illustrate the EELS-FDTD implementation for the case
of an isolated gold nanosphere of diameter a = 160 nm placed
in vacuum. To benchmark our method, BEM calculations are
performed using an electron source implemented in the axial-
symmetry version of this semianalytical method following the
formalism established in ref 15. In addition, the simple spherical
geometry allows us to perform analytical (Mie theory).31 We
use the dielectric function of gold tabulated by Johnson and
Christy.35 While the experimental values are used as is in the
BEM and Mie calculations, analytical multicoefficient models
(MCMs) are used in FDTD to fit these experimental data and
overcome the difficulty of adapting spectrally tabulated
dielectric permittivities into time-domain methods (cf.
Supporting Information, S2).29 The nanoparticle center is
placed at the origin of the coordinate system. To ensure a good
convergence (cf. Supporting Information, S3), we set a monitor
length of 1500 nm (i.e., zmax(min) = ±750 nm). The other
parameters used in the Lumerical FDTD Solutions simulation
are set as follows: a simulation time of 100 fs with an auto-
shutoff parameter of 10−5, a mesh accuracy of 5 (i.e., 22 mesh
points per wavelength), and mesh refinement algorithm set to
“conformal variant 0” allowing for a nonuniform mesh over the
FDTD domain. The physical meaning of these proprietary
parameters is provided in Supporting Information, S3. An initial
simulation is performed to calculate the total electric field Ez at
each point along the electron trajectory in the frequency range
1−3 eV. A second calculation is then performed for the same
electric dipole positions in absence of the nanoparticle to
calculate the background electric field generated by the dipole
in vacuum Ez

0. Schematics of these two configurations is shown
in Figure 1b,c. Then, the induced electric field is computed as
Ez
ind(z) = Ez(z) − Ez

0(z) and inserted into eq 4 to obtain the
EELS spectra. The results of this calculation are shown with
blue lines in Figure 2 for three different impact parameters: b =
120 nm (away from the nanoparticle, bottom), b = 82 nm (in
close proximity to the nanoparticle, center), and b = 0 nm
(through the center of the nanoparticle, top). In all the cases,
we use an electron velocity equal to half of the speed of light in
vacuum c (i.e., υ = 0.5c), which corresponds to a kinetic energy
of 80 keV.
The results obtained with the EELS-FDTD implementation

(blue lines) show a strong peak at 2.4 eV, in very good
agreement with BEM (red lines) and Mie theory (black
triangles) calculations. This peak corresponds to the quad-
rupolar mode of the nanoparticle. The dipolar mode of the
nanoparticle only appears as a shoulder in the spectrum at
smaller energies. Interestingly, the position of this peak
depends on the impact parameter due to retardation effects,
originating from the frequency dependence of the field from
the electron. In contrast to several published methods,18−20,22

the EELS-FDTD implementation can also handle penetrating
trajectories (Figure 2, top). However, for such cases one has to
be careful when performing the FDTD simulation.
The relative position of the electric dipoles with respect to

the nanoparticle surface can artificially introduce numerical
errors. We show in Supporting Information, S5, that when an
electric dipole is placed exactly at the nanoparticle surface, it
produces an overestimation of the EELS signal. This is easily
solved by slightly displacing the entire nanostructure along the
z-axis with respect to the monitor mesh grid (typically 1/3
mesh step). The discrepancies observed between FDTD and
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BEM results (Figure 2, top) can be minimized by increasing the
number of dipoles used in the calculation, in particular in the
part of the trajectory close to the nanostructure, as shown in
Supporting Information, S6.
Although our EELS-FDTD implementation requires per-

forming of a large number of short subcalculations (i.e., one per
dipole position), it allows for reaching a better convergence
level at lower computational cost than DDA18 in specific
configurations (cf. Figure S4 and Table S2 in the Supporting
Information). BEM, due to the axial-symmetry nature of this
particular problem, allows the user to perform the same
calculation much faster. A comparison of the computational
resource used by FDTD, DDA, and BEM to calculate the EELS
spectrum for an impact parameter b = 82 nm (Figure 2, center)
is provided in Supporting Information, S4. A more general and
detailed comparison between the three methods can be found
in ref 36.

■ INTERACTING NANO-OBJECTS
Nanoparticle dimers have been extensively studied using
EELS.11,13,22−24,37,38 For this reason, they constitute another
ideal system to benchmark our EELS-FDTD method. Here, we
study a dimer of closely spaced (i.e., strongly interacting) silver
nanospheres of diameter a = 160 nm placed in vacuum. The
gap size is fixed to g = 5 nm, and we use the dielectric function
for silver tabulated by Palik39 in the BEM calculations and
MCMs fit of the later in the FDTD calculations (Supporting
Information, S2). The other simulation parameters are the
same as for the gold nanosphere (cf. Supporting Information,
S3).
Figure 3 shows the results obtained with our EELS-FDTD

method (blue lines) for three different impact parameters: b =

164.5 nm (dimer end, top), b = 82.5 nm (through the center of
one of the NP, center), and b = 0 nm (in the gap, bottom). In
all the cases, we use an electron velocity of υ = 0.5c (80 keV). It
is well-known that for large gaps the nanoparticles interact only
weakly and the resulting dimer plasmons are essentially
bonding and antibonding combinations of the nanoparticle
plasmons of the same multipole order (e.g., l = 1, dipole).40

Here, due to the very small gap-to-diameter ratio (g/a = 0.03),
the plasmon modes of the dimer contain contributions from all
multipole orders. When the electrons pass in close proximity to
the dimer end (upper spectra), both FDTD and BEM show the
appearance of two weak localized surface plasmon resonances
(LSPRs) at 1.5 and 2.3 eV and stronger features at 3.25 and 3.5
eV (i, ii, iii, and iv, respectively). Though mixed with higher
values of l, the 3.5 eV is dominated by the antibonding dipole,
while the 3.25 eV feature results from the strong hybridization
of high order modes. The low energy and weak features
observed at 1.5 and 2.3 eV are the longitudinal and transverse
bonding dipole modes, respectively. The EELS maps associated
with the four LSPRs (i−iv) are shown in Figure 3b with a 4 nm
spatial resolution. For the sake of simplicity and for
computational considerations, we here excluded penetrating
trajectories. Although the present dimer is much larger (i.e.,
more retardation effects) and has a smaller gap-to-diameter
ratio (i.e., more hybridization), the results are in good
agreement with EELS measurements reported in litera-
ture.11,23,24,37,38 The large energy splitting between the bonding
and antibonding dipolar LSPRs is the signature of a strong
coupling.37,38,40 When the electron beam follows a penetrating
trajectory (center spectra) the high energy antibonding dipole

Figure 2. EELS spectra for a gold nanosphere of diameter a = 160 nm
calculated with the EELS-FDTD implementation (blue lines) for three
impact parameters. From top to bottom: b = 0 nm, b = 82 nm, and b =
120 nm. The EELS-FDTD calculations are compared with BEM
calculations (red lines), and with Mie theory (black triangles, only for
b > a/2). The spectra for b = 120 nm are multiplied by ×10 to
improve the clarity of the figure. The electron velocity is taken equal to
0.5c (i.e., 80 keV) in all cases.

Figure 3. (a) EELS spectra for a dimer of silver nanospheres of
diameter a = 160 nm separated by a gap g = 5 nm. Results obtained
with the EELS-FDTD implementation (blue lines) are compared with
BEM calculations (red lines) for three different impact parameters,
from top to bottom: b = 164.5 nm, b = 82.5 nm, and b = 0 nm. In all
cases, the electron velocity is fixed to 0.5c (i.e., 80 keV). Inset: Zoom-
in view of the low energy part of the upper spectrum. (b) EELS maps
calculated at (i) 1.5, (ii) 2.3, (iii) 3.25, and (iv) 3.5 eV.
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(3.5 eV) remains strong and the transverse bonding dipole (2.3
eV) is strengthened. For a penetrating electron trajectory, also
the bulk plasmon mode at 3.8 eV can be excited.11,24 However,
as we mentioned in the Method section we have chosen not to
include the bulk contribution. For the gap center trajectory
(lower spectra), the bonding dipolar dimer mode cannot be
excited and the spectrum is dominated by the antibonding
dipolar LSPR.11,23,24 Incidentally, due to retardation effects the
position of this mode is slightly different for the different
excitation configurations. This spectral shift has been observed
experimentally for dimers of large nanoparticles.24

■ SUPPORTED NANOSTRUCTURES

EELS experiments require very thin nonabsorbing substrates to
minimize energy losses. Typical EELS substrates are made of
mica, silica (SiO2), silicon nitride (Si3N4, SiNx), or carbon (C),
and their thickness generally ranges from 5 to 50 nm. Even
though such thin substrates introduce a negligible EELS
background and are often considered to have a negligible effect
on the optical properties of the supported nanostructure (i.e.,
small spectral shift with respect to the free-standing
nanostructure), they can be crucial in some situations.41 For
this reason, we calculate the EELS spectra for gold nanodisks of
diameter a = 50 nm and height h = 15 nm placed on 30 nm
thick substrates of different dielectric permittivities: ε = 1 (free-
standing); ε = 2 (SiO2);

42,43 and ε = 4 (Si3N4).
42,44 As in the

case of the isolated sphere, we use the gold dielectric function
tabulated by Johnson and Christy35 in the BEM calculations
and MCMs fit of the later in the FDTD calculations
(Supporting Information, S2). The FDTD simulation param-
eters are the same as in previous cases (cf. Supporting
Information, S3), and the electron velocity is set to υ = 0.5c
(i.e., 80 keV). The results are shown in Figure 4 for FDTD
(blue lines) and BEM (red lines) for an impact parameter b =
27 nm (in close proximity to the nanodisk). As expected, the
dipolar LSPR (2.3 eV for ε = 1) red-shifts with increasing
permittivity of the substrate (1.97 eV for ε = 4). Interestingly, it
has to be noticed a change in the LSPR line shape for ε = 4.
This effect, along with the spectral shift clearly shows that even

very thin substrates can have a significant impact on the EELS
spectrum and may need to be included in the simulations.
Finally, to highlight the power and the flexibility of our

EELS-FDTD implementation, we perform EELS calculations
for a supported bowtie antenna. This complex structure is
composed of two gold equilateral triangles with a lateral length
a = 80 nm, a height h = 15 nm, separated by a gap g = 4 nm.
The gold bowtie structure is placed on top of a 30 nm thick SiN
substrate (calculations for other substrates are shown in
Supporting Information, S7). We also include in the simulation
a 2.5 nm chromium (Cr) adhesion layer. The dielectric
permittivity of SiN is assumed to be constant and equal to
5.5,45 while the corresponding one for Cr is described by
MCMs fit of tabulated data (Supporting Information, S2).39

The FDTD simulation parameters are given in Supporting
Information, S3.
The results of this simulation are shown in Figure 5. There,

we observe that for edge excitations (Figure 5a) the spectra

display two LSPRs (i, iv) located at 1.27 and 2.39 eV,
respectively. In this case, different impact parameters produce
very different intensity ratios for these LSPRs. On the other
hand when electron trajectory crosses the center of the gap
(Figure 5b) the EELS spectrum displays two distinct LSPRs (ii,
iii) at 1.68 and 2.17 eV, respectively, with relative intensities
that are much less dependent on the impact parameter. When
displacing the electron trajectory off-axis, the LSPR at 2.17 eV
(iii) becomes weaker progressively, while the one at 1.68 eV
(ii) remains unchanged. All these results, along with the results
for a single triangular prism (Supporting Information, S8), are
in good agreement with the experimental observations by Yang
and co-workers.10,12 The small discrepancies, mainly in the line
widths, are related to the presence of a thicker Cr adhesion
layer in our calculations, which is known to introduce a

Figure 4. EELS spectra for a gold nanodisk of diameter a = 50 nm and
height h = 15 nm placed on top of a 30 nm thick substrate with
dielectric permittivity ε = 1, 2, and 4 calculated with the EELS-FDTD
implementation (blue lines) and BEM (red lines). The impact
parameter is fixed to b = 27 nm and the electron velocity is 0.5c (i.e.,
80 keV).

Figure 5. EELS spectra for a gold bowtie antenna calculated with the
EELS-FDTD implementation. Each triangle has a lateral length a = 80
nm, height h = 15 nm, and gap g = 4 nm. The bowtie antenna is
supported by a 30 nm thick SiN substrate. A 2.5 nm chromium
adhesion layer is included. The electron velocity is taken equal to 0.5c
(i.e., 80 keV) in all cases. (a) EELS spectra for edge excitation with
four different impact parameters: 2 (blue), 5 (purple), 10 (red), and
15 nm (black; cf. inset). (b) EELS spectra for gap excitation with five
different impact parameters: 0 (blue), 2 (purple), 5 (red), 10 (brown),
and 15 nm (black; cf. inset). (c) EELS maps calculated at (i) 1.27, (ii)
1.68, (iii) 2.17, and (iv) 2.39 eV.
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broadening and a red-shift of the LSPRs (cf. Supporting
Information, S8).46,47

Figure 5c shows the EELS maps corresponding to the four
LSPRs (i−iv) calculated using our EELS-FDTD implementa-
tion with a 2 nm spatial resolution. Similarly to the dimer, we
here choose to exclude penetrating trajectories. The nature of
the LSP modes can straightforwardly be determined from these
maps. Modes (i) and (ii) correspond to the dipolar bonding
(bright) and antibonding (dark) modes, respectively. The map
for 2.39 eV shows strong EELS signal from each bowtie edge
underlining the high-order nature of mode (iv). These results
are also in excellent quantitative agreement with the recent
studies by Yang and co-workers.10,12 Finally, mode (iii) displays
a EELS signal which is strongly localized at the bowtie gap. This
spatial confinement directly correlates with the rapid vanishing
of mode (iii) when the electron trajectory is displaced off-gap
(Figure 5b). Interestingly, this mode was not imaged by Duan
et al. because their excitation geometry was off-gap excitation.10

■ CONCLUSIONS

We have presented a simple procedure to calculate the energy
loss probability of fast electrons interacting with metallic
nanostructures. Although this method can be implemented
with any Maxwell’s equation solver we have chosen here to
work with the commercial package Lumerical FDTD
Solutions29 due to the flexibility of the FDTD method and
its user-friendly environment. Contrary to most of the well-
established methods, we have shown that this implementation
can deal with both penetrating and nonpenetrating trajectories
and nanostructures of arbitrary geometries and morphologies,
including substrates and adhesion layers. We have bench-
marked our EELS-FDTD implementation by comparing the
results with the well-established BEM method for different
representative nanostructures, such as nanospheres, nano-
particle dimers, and a nanodisk supported by a substrate.
Furthermore, we have applied this method to study the EELS
spectrum of a complex system consisting of a supported bowtie
antenna, and we have mapped the LSPR modes of the latter.
Our EELS-FDTD method provides a simple and convenient
approach for the calculation of EELS spectra and maps from
complex nanostructures of arbitrary shape and composition.
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